

Technical Data Sheet

TYPE 17 CHROME - 7 NICKEL WIRE

Type 17 chrome - 7 nickel stainless steel wire (AISI 631) has the corrosion resistance of Type 302 plus superior strength and heat resistance. This grade of stainless wire possesses high elastic qualities similar to music wire while maintaining the corrosion resistant qualities of the standard Type 302 stainless. The alloy is an excellent material for all kinds of springs where long life is required under severe service conditions, providing excellent fatigue properties, ductility, high yield strength, Modulus of elasticity, and strength-to-weight ratio.

17 chrome - 7 nickel offers the advantage of being easily formed in Condition C and then hardened to high strength levels by simple heat treatment. 17-7 is hardenable due to the addition of aluminum to the chemistry of the alloy.

Gibbs 17 chrome - 7 nickel stainless wire is furnished in the cold drawn Condition C and should be treated at 900°F. for one hour after forming into springs to achieve the maximum tensile properties of Condition CH900 (cold drawn and age hardened). Sizes are available within the range of .017" - .625" conforming to ASTMA313 and AMS5678.

Chemical Composition Per AMS5678								
Carbon	0.090 % max		Chromium	16 - 18 %		Molybdenum	0.750 % max	
Manganese	1.00% max		Nickel	6.50 - 7.75 %		Copper	0.500 % max	
Silicon	1.00 % max		Aluminum	0.75 - 1.50 %		Phosphorus	0.040 % max	
						Sulfur	0.030 % max	
Tensile Strength Table (AMS-5678 spec)								
Nominal Diameter		As cold drawn				Precipitation Hardened		
Inch.		Condition C				Condition CH900		
		Tensile Strength				Tensile Strength		
			Min PSI	Max PSI		Min PSI	Max PSI	
.015 to .020			275,000	305,000		335,000	365,000	
Over .020 to .025			270,000	300,000		330,000	360,000	
Over .025 to .029			265,000	295,000		325,000	355,000	
Over .029 to .041			260,000	290,000		320,000	350,000	
Over .041 to .051			255,000	285,000		310,000	340,000	
Over .051 to .061			250,000	280,000		305,000	335,000	
Over .061 to .071			242,000	272,000		297,000	327,000	
Over .071 to .086			240,000	270,000		292,000	322,000	
Over .086 to .090			230,000	260,000		282,000	312,000	
Over .090 to .100			227,000	257,000		279,000	309,000	
Over .100 to .106			223,000	253,000		274,000	304,000	
Over .106 to .130			221,000	251,000		272,000	302,000	
Over .130 to .138			215,000	245,000		260,000	290,000	
Over .138 to .146			213,000	243,000		258,000	288,000	
Over .146 to .162			211,000	241,000		256,000	286,000	
Over .162 to .180			209,000	239,000		254,000	284,000	
Over .180 to .207			207,000	237,000		252,000	282,000	
Over .207 to .225			203,000	233,000		248,000	278,000	
Over .225 to .306			198,000	228,000		242,000	272,000	
Over .306 to .440			192,000	222,000		235,000	265,000	
Over .440 to .625			187,000	217,000		230,000	260,000	

The above charts are intended to provide general background information. You should also review the appropriate material specification. Please contact Gibbs if you have any questions.

Gibbs Wire & Steel Company Inc. Metals Drive, Southington, CT 06489 (860) 621-0121